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My research focuses on problems in low-dimensional topology, specifically knot theory,

contact geometry and symplectic topology. Knots and links are the basic objects to study

in low-dimensional topology. For instance, any closed and oriented 3-manifold is the result

of Dehn surgery along some knot or link in S3. Researchers also study braids because any

knot or link can be obtained from the closure of a braid. Furthermore, a braid is a mapping

class where the surface is a punctured disk.

I am studying how to detect the conjugacy class of 3-braids admitting a flype by using

Agol cycles [AK21]. I also like to classify knots and links. A knot invariant assigns a quantity

to a knot and can be used to identify distinct knots when the output from the invariant of

two knots differ. In [AKT21], I studied the s and τ knot concordance invariants and their

application to contact topology. More details about my current and past research can be

found in the subsequent sections.

Current Research

Let Bn denote the n stranded braid group. We focus on braids in B3 which is isomorphic

to the mapping class group of a 3-punctured disk, MCG(D3). In particular, we consider 3-

braids that are related by a flype. The template of a negative flype from [BM06b] is shown

in Figure 1.

Figure 1. Negative flype template
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Flypes are interesting to consider. For instance, in the Tait flype conjecture, Thistleth-

waite and Menasco proved that two reduced alternating diagrams of an alternating link are

related by a sequence of flypes [MT93]. In addition, flypes play a significant role in Bir-

man and Menasco’s work on Markov Theorem without Stabilization [BM06a] and on the

existence of non transversally simple knots [BM06b]. Another specific result with flypes of

3-braids is Birman and Menasco’s classification theorem in [BM93] which states that there

exist two conjugacy classes of 3-braid representatives of link type L if and only if L has a

3-braid representative that admits a non-degenerate flype. Non-degenerate flypes have been

classified by Ko and Lee in [KL99]. Although Birman and Menasco’s paper was published

in 1993, researchers have been unable to provide an alternate proof of such a fundamental

result.

By restricting ourselves to pseudo-Anosov 3-braids, we are able to compare Agol cycles

of braids related by a non-degenerate flype. First, we investigated the dilatation of a pseudo-

Anosov mapping class, but it was ineffective in detecting a non-degenerate flype even though

it is a conjugacy class invariant as detailed in Theorem 1.

Theorem 1. Let β = σx
1σ
−1
2 σy

1σ
z
2 and β′ = σx

1σ
z
2σ

y
1σ
−1
2 be pseudo-Anosov 3-braids related by

a flype. For large x, y and z, the braids β and β′ have the same dilatation

λ =
1

2
(γ +

√
γ2 − 4)

where γ = sgn(xyz)(−2 − x − y + xz + yz + xyz). Thus the dilatation cannot detect non-

degenerate flypes.

We consider Agol cycles which are a known conjugacy class invariant, specifically for

pseudo-Anosov mapping classes [Ago11]. Agol cycles are sequences of invariant train tracks

created from maximal splittings. The two train track types, Type M and W as shown in

Figure 2, carry all train tracks of pseudo-Anosov 3-braids.

α 1

α 1

Figure 2. Train tracks M(α, 1) and W(α, 1)
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This research has led to define three types of Agol cycles: Agol-positive cycles which

detect non-degenerate flypes, mirror-Agol positive cycles which detects non-degnerate flypes

up to mirror image, and Agol-negative cycles which are unable to detect non-degenerate

flypes. Our main result, Theorem 2, proves a sufficient condition of mirror Agol-positive.

We also prove the existence of an infinite sequence of braids which satisfies the conditions of

Theorem 2.

Theorem 2. Let β = σx
1σ
−1
2 σy

1σ
z
2 and β′ = σx

1σ
z
2σ

y
1σ
−1
2 be pseudo-Anosov 3-braids related by a

flype. Let α, α′ be the edge weights of β and β′ respectively as seen in Figure 2. Let {τi}i=1,2,...

and {τ ′i′}i=1,2,... be maximal splitting sequences of train tracks for β and β′ respectively. If

(1) α and α′ satisfy a+ bα + cα′ + dαα′ = 0 for some a, b, c, d ∈ Z, and

(2) there exists a homeomorphism φ : D2 → D2 such that φ(τl) = mirror(τ ′m) for some

l,m ∈ N that preserves the weights of the edges,

then β and β′ have the same Agol cycle up to scaling, homeomorphism and mirror image.

Past Research

The joint work I did with Keiko Kawamuro and Linh Truong in [AKT21] focused on

comparing the values of Rasmussen’s s invariant [Ras10] and Ozsváth and Szabó’s τ invariant

[OS03], the self-linking number of braids, and the four-ball genus of a knot. The slice-

Bennequin inequality provides an upper bound for the self-linking number in terms of the

four-ball genus and is one of the most significant inequalities in contact topology. We adopt

the definition of the defect of the slice-Bennequin inequality from [HIK19] and similarly define

the defects of the s-Bennequin and τ -Bennequin inequalities. In Theorem 3, we show that

the defect from the slice-Bennequin inequality can be arbitrarily large while the defects from

the s-Bennequin inequality and the τ -Bennequin inequality are both bounded. The knots

from Theorem 3 are the closures of the braids seen in Figure 3 and are the first example of

an infinite sequence of knots with this property.

Theorem 3. There exists a family of knots Kn, where n = 1, 2, · · · , such that the defect

of the slice-Bennequin inequality is 2n and the defects of the s-Bennequin inequality and

τ -Bennequin inequality are both zero.
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2n

Figure 3. The braid βn. The braid closure K1 = β̂1 is the knot 10125 and

K2 = β̂2 is the knot 12n235.

...

...

...
x1 x2 xk

... xi=

Figure 4. Pretzel projection (x1, x2, . . . , xk)

The knots from Theorem 3 also have applications to homological invariants. Ozsváth-

Szabó-Thurston’s transverse invariant θ̂ from knot Floer homology [OST08] and Plamevskaya’s

transverse invariant ψ from Khovanov homology [Pla06] both have the property of being

nonzero for quasipositive knots. However, we show that the knots from Theorem 3 are non-

quasipositive, θ̂(Kn) 6= 0, and ψ(Kn) 6= 0. Thus, these invariants are ineffective in detecting

the non-quasipositive property for an infinite sequence of knots.

In [Ace17], I extended pseudodiagrams of knots and links along with their trivializing

and knotting numbers to pseudodiagrams of spatial graphs. Pseudodiagrams were first in-

troduced because precrossings (double points without over or under crossing information)

appear naturally when observing DNA during the replication process. I explicitly calculated

the trivializing and knotting numbers of 2-bouquet graphs based on the number of precross-

ings and their placement in the pretzel projection from Figure 4. In Theorem 4, I proved

the existence of a pretzel projection with knotting number k > 2 and find the finite number

of possible trivializing numbers.

Theorem 4. For any k ∈ N where k ≥ 2, there exists a pretzel projection P = (x1, x2, · · · , xm,

y1, y2, · · · , yn), where not both m and n are zero, xi = 1 for all 1 ≤ i ≤ m, yj ≥ 2 for all

1 ≤ j ≤ n, with kn(P ) = k, and the following trivializing numbers for some l ∈ N0:
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tr(P ) =



2(k − 1) or 2(k − 2) if n = 0

2n(k − 2) + 2 + 2l if n ≥ 1 and one yj is even

2

⌊
m+ n

2

⌋
+ 2n(k − 2) + 2l if n ≥ 1, all yj are odd,

and m ≤ n+ 1

2(k − 1)(n+ 1) + 2l or if n ≥ 1, all yj are odd,

2

⌊
m+ n

2

⌋
+ 2n(k − 2) + 2l and m > n+ 1

As an undergraduate, I worked with David Heywood, Ashley Klahr, and Oscar Vega

in an REU in projective geometry and published our results in [AHKV14]. We developed a

procedure to embed cycles of any length in PG(n, q) given that q is a power of a prime and

n ≥ 3 as shown in Figure 5. This was the first time any results had been proven with n ≥ 3.

I also worked on a project as a Fresno State Tensor Women Scholar (supported by an MAA

Tensor Women and Mathematics Grant) with Jennifer Elder. In [AE15], we constructed an

invariant to distinguish between spatial graphs by transforming our graph into a knot and

then using known invariants from knot theory to obtain an expression for each graph. By

recording all possible link types that can be created from the original graph, we produced a

stronger invariant. These processes can be manipulated so that they can be conducted on

directed spatial graphs as well.

Figure 5. Visual representation of cycle construction in PG(n, q)
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Future Research

During our investigation of Agol cycles of 3-braids, we noticed we could predict the

length of the Agol cycle. If β = σx
1σ
−1
2 σy

1σ
z
2 and β′ = σx

1σ
z
2σ

y
1σ
−1
2 are related by a non-

degenerate flype, their Agol cycles will have the same length and it is determined by the sign

and values of x, y, and z as seen in Conjecture 1.

Conjecture 1. If β = σx
1σ
−1
2 σy

1σ
z
2 and β′ = σx

1σ
z
2σ

y
1σ
−1
2 are related by a non-degenerate flype,

then the length of the Agol cycle L is determined by the sign of x, y, and z and must be one

of four values as outlined below.

x, y, z < 0 : L = |x|+ |y|+ |z| − 5 y, z < 0;x > 0 : L = |x|+ |y|+ |z| − 1

x, y < 0; z > 0 : L = |x|+ |y|+ |z| − 3 y < 0;x, z > 0 : L = |x|+ |y|+ |z| − 1

x, z < 0; y > 0 : L = |x|+ |y|+ |z| − 1 z < 0;x, y > 0 : L = |x|+ |y|+ |z|+ 1

x < 0; y, z > 0 : L = |x|+ |y|+ |z| − 1 x, y, z > 0 : L = |x|+ |y|+ |z| − 1

So far, we have only found Agol-positive and mirror Agol-positive cycles. However, we

suspect that Agol-negative cycles exist which leads to the next conjecture.

Conjecture 2. There exists an infinite sequence of 3-braids which admit a non-degenerate

flype and have Agol-negative cycles.
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